
CENG491

INITIAL DESIGN
REPORT

ANKA YAZILIM
December 2005

Aysun BAŞÇETİNÇELİK
C. Acar ERKEK
Çağıl ÖZTÜRK

Mennan GÜDER

TABLE OF CONTENTS

1 INTRODUCTION ...4

1.1 Purpose and Scope of the Document... 4

1.2 Design Constraints and Limitations .. 4

1.3 Design Goals.. 5

2 OVERVIEW OF THE APPLICATION..6

2.1 Preparing the Environment... 6
2.1.1 Defining the map.. 6
2.1.2 Constructing a game.. 6
2.1.3 Constructing an animation ... 7

2.2 Playing the Game... 8

2.3 Watching the Animation ... 8

3 USER INTERFACE DESIGN ..9

3.1 Player Menu Design... 9

3.2 Editor Design.. 10
3.2.1 ‘Yeni’ tool-command .. 13
3.2.2 ‘Aktar’ tool-command ... 13
3.2.3 ‘Aç’ tool-command ... 13
3.2.4 ‘Araç Kutusu’ Sub-Window .. 13
3.2.5 ‘Eklenmiş Nesneler’ Sub-Window .. 14
3.2.6 ‘Özellikler’ Sub-Window ... 14

3.3 Viewer Design .. 14

4 SYSTEM OVERVIEW..16

4.1 User Interface (1.0) .. 18
4.1.1 Input Handling (1.1) ... 18
4.1.2 Output Integration (1.2).. 19

4.2 Graphics Engine (2.0) .. 19

4.3 Sound Engine (3.0) .. 19

4.4 AI Engine (4.0) ... 20

4.5 Editor Engine (5A.0) ... 21
4.5.1 Program Core (5A.1).. 21
4.5.2 Data Calculations (5B.2) .. 21

4.6 Viewer Engine (5B.0) ... 22
4.6.1 Action Triggers (5B.3) .. 23

4.7 File Manager (6.0).. 23
4.7.1 Save (6.1) .. 24
4.7.2 Load (6.2)... 24
4.7.3 Load Model and Sound (6.3) ... 24
4.7.4 Export Animation (6.4) ... 24

5 DATA DESIGN..25

5.1 Classes .. 25
5.1.1 VisualObject Class... 25
5.1.2 Human Class ... 26
5.1.3 Vehicle Class ... 26
5.1.4 StaticObjects Class.. 26
5.1.5 Traffic Class ... 26
5.1.6 BlueArea Class .. 26
5.1.7 Message Class .. 27
5.1.8 BaseApp Class .. 27
5.1.9 Game Class ... 29
5.1.10 Animation Class ... 29
5.1.11 Map Class .. 30
5.1.12 Road Class .. 31
5.1.13 RoadSegment Class .. 31
5.1.14 Path Class.. 31
5.1.15 FileManager Class ... 32
5.1.16 UserInterface Class ... 33
5.1.17 Vector2 Class... 33
5.1.18 Vector3 Class... 33

5.2 File Formats ... 34
5.2.1 Model Files... 34
5.2.2 Animation Files .. 36
5.2.3 Game Files... 37
5.2.4 Map Files ... 38
5.2.5 Log Files .. 38

6 SEQUENCE DIAGRAMS ..38

6.1 Sequences Related to User Interface... 38
6.1.1 Ruler .. 39
6.1.2 Load Animation / Game ... 40
6.1.3 Convert Animation to .avi format.. 41

6.1.4 Add Object ... 42
6.1.5 Capture .. 43
6.1.6 Save Animation or Game File .. 44
6.1.7 Play Selected Message ... 44

7 ADDITIONAL CONVENTIONS ...45

7.1 Virtual 3D World ... 45

7.2 Frame Rate issue in games and animations .. 45

8 CONCLUSION ..46

9 APPENDIX ..48

9.1 Appendix A – Class Hierarchy and Relations ... 48

9.2 Appendix B – Gantt chart ... 49

1 INTRODUCTION
“Anka Trafik” provides an editor for educator and an application environment for the

learner. It is a tool designed for traffic education for primary school students focusing

on age above ten. The details about the application have been told in our

requirement analysis report.

1.1 Purpose and Scope of the Document
The purpose of this report is to explain the details of our design approach to our

application “Anka Trafik”. These details are basically about the relations and

interactions between the components of the overall structure. Parts of the system

architecture which are explained in this document are:

• The data flow between different parts of the system

• The file types that we will be used

• External libraries and sources that will be used

• Detailed description and specification of the modules and the classes

• Event handlers

• Integrating Artificial Intelligence

1.2 Design Constraints and Limitations
Besides the time limitation important limitations are:

• User environment: The current technology used in end users’ computers

determines our program’s ability. Our end users are teachers and students and

the environment is generally schools and the students’ and teachers’ home

computers. Thus we have to consider end user environment in order to

determine the capabilities of our tool.

• External libraries and tools: We are using software tools and libraries like Ogre,

OpenSteer, etc the limitations in these can directly affect our design. As a result

of our search about the external tools we tried to select the ones which have

all of the functions we will need. Thus, we will not spend much time integrating

them.

4

• Experience on external tools and libraries: Many of the tools and libraries we

will use are not familiar to us. However, as a result of our survey we have got

familiar to them. During the prototype creation we will have a deeper

understanding of these tools and environment.

1.3 Design Goals
In order to create a high performance and useful tool the following goals will be the

basis of our developing manner:

• Performance:

Since graphics is the base of our software application, we have to consider the

performance problems in a detailed manner. In order to avoid future

performance problems, we would try to determine the best frame rate for the

running application. The frame rate calculations will be carefully done. We will

also determine the data structures that we will use in a way that high

performance speed is as optimized as possible.

• Well organized code:

By the help of using C++, an object oriented approach, we are planning to

create a well organized code. As a result of this, our tool will be easily

maintainable and extendible.

• Usability:

Creating an easy to use tool is one of our main aims. Because of the fact that

the end users are teachers and students, their computer knowledge is limited.

Another usability condition is the complexity of learning the tool. Our aim is to

develop a tool that is easy to learn how to use.

• Reliability

The tool will be tested in every part of the implementation phase, thus crashes

will be tried to be avoided.

• Satisfying user needs:

Most important area that our tool will be used is the school. Thus we have to

consider the needs of teachers while he/she is using the tool. The general

needs of a teacher are:

5

o Creating all possible scenarios in traffic education of children:

We are enabling user for creating possible scenarios by not doing our

development scenario based.

o Evaluating the children:

Our tool will make this possible by supplying a file which contains the

number and types of the errors that has been done by the player or

watcher during the animation and game.

2 OVERVIEW OF THE APPLICATION
In order to use the tool there are two phases:

• First the teacher prepares the environment or the animation

• Second the learner watches or plays the prepared game or animation

2.1 Preparing the Environment
The person who prepares the environment must:

2.1.1 Defining the map

• Edit predefined animations or games as a starting pattern by opening.

or

• Create a completely new map by opening a new map

• Define the traffic rules which are aimed to teach and find the related traffic

signs by selecting from predefined ones in the tool. For example:

o Traffic lamps

o Pedestrian crossing

o Overpass, etc.

• Insert the selected objects

• Then according to the choice, game or animation creation, follow one of the

following ways:

2.1.2 Constructing a game
• After creating the basic map, educator should determine the path for

pedestrians and vehicles by using the mouse. Also, he/she should determine

the density of them.

6

• Define the role of the learner and the role must be explicitly written in the

mission part.

o Mission part will be displayed at the beginning of the learner’s session for

learner to read before starting to play the selected game.

• Define start and end positions related to the defined aim

• Choose a character that will be controlled by the learner. The character can

be one of the following

o A person as a pedestrian

o A person using a skateboard

o A person using a bicycle, etc.

• Define possible mistakes that a learner can do related to that rule.

• Define the “Blue Area” that corresponds to the mistake in case of entering that

area the mistake occurs.

• Define the message that will be passed to the learner when the mistake

occurs:

o Message can be constructed by recording someone’s own voice or

displaying a written message.

• After the learner gets to the end position, the tool will form a file.

o Evaluation report contains the feedback about the game. This

feedback will include the mistake and how many times that mistake is

done. In the case of a game the mistake definition include not obeying

the defined rule.

• Then saves the environment created

2.1.3 Constructing an animation
• After creating the basic map with static objects, educator should add the

objects he/she will use for the animation. He/she will do that by determining

the frames of the animation.

• Define the frames

o Select the object

o Assign a task to the object

o Choose the start frame of the task which is the current frame

7

o According to the task give the parameters using the mouse or the

keyboard

• Define questions which will appear during the animation

• Define the message that will be passed to the learner during the animation

with the frame it will appear. Messages can be

o One of the questions defined or

o Information about the rule that will be stressed

• After the learner watched all of the animation and answered all of the

questions defined, the tool will form a file which contains the feedback about

the pop-up questions’ answers. This feedback will include the answers that

were given to the questions by the learner.

• Then saves the environment created

2.2 Playing the Game
• User first selects the game which he/she will play by browsing from the existing

ones.

• After the selection the game starts

• Player controls and directs character in the game in order to get to the end

which is mentioned in the mission part. Except the character, there will be no

controllable object in the game. However, many of the objects will have their

own artificial intelligence.

• When the player starts the game and does a mistake by not obeying one of

the defined rules, he/she gets an error message defined by the teacher.

• After the error message is appeared, the player returns to the position in which

he/she was just before the error is occurred.

• When the player gets to the destination, the game finishes.

2.3 Watching the Animation
The basics and properties in the animation part are:

• The watcher first selects the animation that he/she will watch by browsing from

the existing ones.

8

• During the animation, questions prepared by the teacher will appear as a pop-

up to measure.

• The watcher will answer the question and after that he answered the question

he/she will continue to the animation.

• After the learner watched all of the animation and answered all of the

questions defined the animation finishes.

3 USER INTERFACE DESIGN
There is going to be two executables. One of them gets user information, takes user

request, then starts an animation or a game. Other serves an editor for user to make a

game or an animation. The following subsections explain the interface designs for

these two executables. The figures we illustrated there are not the exact forms in final

product. They just generalize the user-computer interface.

3.1 Player Menu Design
The below figure illustrates the login form and starts a game or an animation. Some

user information, student id or name, will be taken. This information will be used in

messages given to the student for encouraging. All animation and game files are

kept in a directory, accessed from there. They are accessed by this menu.

Main Menu for Viewer

9

As we stated in our requirement analysis report when the animation ends, an

information screen will appear which will tell the user about the point user has taken

from questions. The below figure illustrates this screen. Within the evaluation report

grade, user predefined comment, the mistakes can be shown.

Report Window

3.2 Editor Design
The below figures illustrate the general structure of our editor, and the main difference

of two process modes (edit animation and edit game processes).

10

Game Editor

Instructor can make an animation or a game within a single editor. However, there

should be a mechanism to know the current application on editor (i.e. whether the

user is making animation or making game). We should know this because we give

more rights to the user of the editor on making animation but limited rights on making

a game. For example, with game editor user can assign a main character and give

him/her start and end position (where he starts his action and where he finalizes it);

with animation editor user just sets the actions of characters in the interval between

start and end position; however with game we take this information from player.

11

Settings on such actions are done with properties sub-panel, so it should be different

for an animation and a game; and we should know the active process to make it

different.

Animation Editor

There would be a ruler to cross the frames on 3D view sup-part of the editor. This

would not include rendering. It just changes the frames. So it uses only graphics and AI

to show the objects in correct places. The ruler is going to be set only for the

12

animation because the next frame is going to be determined by the player at the

time of game play.

During the usage of editor, the user can add objects to the 3D view part by changing

the camera view using the controls with the keyboard. These controls are:

• CTRL + Arrow Keys : to move the camera’s look at position

• Arrow Keys : to change the camera view without changing the place,

only by changing the angle

3.2.1 ‘Yeni’ tool-command
If user has done some animation; decided to stop working on it and wanted to

prepare game, he changes the animation and game selection on editor. We

attached this selection from toolbar on ‘yeni’ tool-command. Clicking on ‘yeni’

causes a pop-up menu which includes 2 options: animation or game. Any other

selection causes the editor to be reset and the ‘mode’ variable to change. Before the

reset, user is asked for savings, and then the initial configuration for game is set. The

same editor exists for animation and game. The difference is the scene on its sub-

panels. For example, on a change from game to animation 3D view sub-part is

cleared.

3.2.2 ‘Aktar’ tool-command
This tool command is active on animation mode. It is used for converting animations

to ‘.avi’ format.

3.2.3 ‘Aç’ tool-command
Lists the saved animation and game files. User makes an animation or game selection.

It works like ‘Yeni’ tool-command. But this time the editor is set with respect to the

selected animation or game instead of the editor’s initial configurations.

3.2.4 ‘Araç Kutusu’ Sub-Window
For each 3D model we designed, there is a thumbnail image on the panel. These

images are grouped in tabs. They are grouped into human, special, vehicles,

environment and roads and signs objects. The objects added are seen from 3D view

part of editor.

13

3.2.5 ‘Eklenmiş Nesneler’ Sub-Window
This sub-window shows the objects that are added before. Using this sub-window and

clicking the previously added objects, user can select the object and view the

properties in the “Özellikler” Sub-Window.

3.2.6 ‘Özellikler’ Sub-Window
This sub-window shows the properties of the selected object. Thus, the user can modify

the object easily.

3.3 Viewer Design

The below figure illustrates viewing an animation option of our tool. The user first

selects the animation from available ones by clicking on the “Aç” tool command.

After the selection the animation is ready to run by clicking on the “Oynat” button. At

any time during the animation the user can stop the animation by using the timeline

bar. There is a “Çıkış” animation option for exiting.

14

Animation Viewer

The below figure illustrates playing the game option of our tool. The user first selects

the game from available ones by clicking on the “Aç” tool command. After the

selection, the game is starts to run. There is a “Çıkış” animation option for exiting.

15

Game Viewer

4 SYSTEM OVERVIEW

Our application is composed of two parts: Editor and Viewer. The difference between

these parts is one of them is used for creating animations and games; the other is used

16

for viewing these animations and games. Beside this difference, they can be thought

as almost same in the means of program's internal processes.

As we see in the above graph, our only external entity is the user of the program. The

user sends its requests by mouse and keyboard. And he/she gets the output from

speakers and monitor of its computer. The details of the user interactions are

described in user interface section of this document.

Also we have a data repository to hold 3D models and sounds (environmental sounds)

that will be used in the game. The user files are simply the data that user saved for

later use (to edit in the editor again, or to view in the viewer). It is just the working

folder of the user and it can be anywhere in the computer or on a removable media.

All file formats are described in file formats section of this document.

The internal logical architecture of the program can be represented as below:

17

4.1 User Interface (1.0)
We are using CEGUI (Crazy Eddie's Graphical User Interface) manager for user

interface. Actually we planned to use windows API, but later we see that CEGUI is very

suitable for using with our graphics engine (OGRE3D). In CEGUI manager, the overlay

of the the interface is designed before coding the program, then this overlay is

imported in the initialization of the program.

4.1.1 Input Handling (1.1)
Input handling is done by callback functions of user interface elements. These

callback functions are subscribed during initialization of the user interface. The mouse

and keyboard events will be captured by frame listener binded with OGRE window

and necessary callback functions will be called.

18

4.1.2 Output Integration (1.2)
Output integration is simple. The windows of user interface will be showed according

to program state. And one of these windows will be binded to Graphics Engine

(OGRE3D). The integration of sound with display will be automatically done in

hardware level (play functions of sound engine, OpenAL, gives sound directly to user).

4.2 Graphics Engine (2.0)
As we stated before, we will be using Ogre3D graphics renderer as our graphics

engine. The ogre engine is used by creating an application object of Ogre class and

calling its go function. Then rendering process will continue until we close it. So we will

initialize our program (load necessary data) before calling ‘go’ function. Rendering

can be closed in the frame callback functions of Ogre frame. These callback

functions are called after every frame is rendered and before every frame is

rendered.

Actually our user interface will be an Ogre frame. Our 3D view will be a child frame of

the user interface frame. When 3D view frame interacts with mouse, its frame listener

will be activated and response the action.

4.3 Sound Engine (3.0)
We will be using OpenAL as our sound engine. OpenAL is a powerful tool for using

sound in applications (like games), but we are not making a game and do not need

the complex features of the engine. We need the engine only in two places.

One of our usages is giving environment sounds to the user so that a child playing a

game will be able to hear the cars around. This feature will be done simply by calling

play functions of OpenAL. The car and other environmental sounds will be hold in

model repository.

The second is the message facility of our editors. The teacher will be able to add

sound clips to screen messages. This feature will be maintained by calling record

functions of OpenAL. The sound data will be saved into the animation/game file.

19

We are not interested in other features of OpenAL (like 3d sounds, complex sound

effects, etc). We simulate the 3d sound effect by calculating the distance between

the cars and user, and adjusting volume with respect to distance.

OpenAL uses OpenGL like engine. After initialization in the beginning of the program,

it starts playing when we call ‘play’ and stops when we call ‘stop’ function. So we do

not need anything to integrate it with Ogre, but calling the functions in idle times.

4.4 AI Engine (4.0)
We will use OpenSteer library for artificial intelligence purposes. OpenSteer is a

specialized library for determining steering behaviors of automatic objects. We will use

it for determining car behaviors and pedestrian behaviors (other than the main

character in games).

Initially we will define a terrain map (terrainMap class) in the engine. This terrain map

determines where the objects can go where they can not go. Actually this map can

be thought as a virtual model of our map data. Later we will add the road data to this

object by the Route class of the engine. This route data determines the normal path

of the objects (the roads of our animation/game map). Our cars and humans will be

inherited from SimpleVehicle class of OpenSteer and will be binded to the terrain

map. Later in game or animation, at each idle time interval, we will predict the next

behaviors of all objects by calling this terrain map.

In game editor, we will not use artificial intelligence. In animation editor and

animation viewer, we will use it for calculating future frames (since we hold the

behaviors only, we need to calculate every time we watch the animation. In games,

the random movements of pedestrians and cars in traffic are calculated by the

engine.

20

4.5 Editor Engine (5A.0)
Editor Engine is the main part of our program when the program is started in editor

mode. All of the calculations that are done is in this part and later passed to the other

engines.

Editor engine is not defined as a class or function. It is the combination of all other

function calls before rendering, and during rendering. So we can say that it is our

entire program other than external libraries (sound engine, graphic engine, AI

engine).

4.5.1 Program Core (5A.1)
It is the part of the program that holds all data of the program, like current animation

or game data, time information, program states. When the program starts, core is

initialized. When new data exists, the core must be updated. It is the combination of

global variables and functions that manipulates this global data.

User interface learns what to show by interacting with this part (program state). User

interface callbacks (user requests) changes the state by triggering update functions.

When user wants to save or load data, File Manager interacts with this part to get or

set the data.

4.5.2 Data Calculations (5B.2)
At every step of our program, like user actions and frame rendering, we need to

update positions of the objects and the data related with animations or games. This

part of the program calculates the necessary changes, updates core data, triggers

the necessary functions from other engines.

After every frame, the program data (program state and environment data) is taken

from program core. Then, all object data is passed to AI engine and future

movements (object behaviors) are predicted for objects. Later, if necessary, program

core is updated (data update). Finally, the changes in graphic and or sound engine is

calculated and passed to the sound engine and graphic engine.

21

This part contains all of the functions, examinations that are done at every idle time

interval (in frame callbacks of graphic engine).

4.6 Viewer Engine (5B.0)
This part is almost same with editor engine. The only difference is action triggers(5B.3)

module.

In games, the user (child) will wander in the virtual map (our 3d world). The main

character of the game (the object the user controls), may encounter some special

conditions (like violating a traffic rule or stepping on a user defined area, which is

defined by teacher by adding blue area to the map). Also in both games and

animations message screens will appear and wait for user to interact with these

22

screens. In both of these two conditions, the program behavior must be changed to

reflect the effects of these conditions. Action triggers deals this situations.

4.6.1 Action Triggers (5B.3)
In viewer engine's data calculations, different from editor engine, all above conditions

must be checked by calculating the main character's position (in games) and time (in

animations). If any found, this is passed to action triggers (action data). Then, the

functions of that action are called and new object behaviors is calculated according

to that action and passed back again.

4.7 File Manager (6.0)
File manager is the class that contains our file related mechanisms. It will be

implemented as a namespace in our application. The file formats are not described in

this part.

23

4.7.1 Save (6.1)
When the user wants to save a game or animation, it is maintained by this module.

Also when a game or animation ends (in viewer mode) the log of the game or the

animation is saved to the default folder by this module.

4.7.2 Load (6.2)
When the user wants to load a game or animation, it is maintained by this module.

4.7.3 Load Model and Sound (6.3)
This function loads a model or a sound from model repository. This function is needed

by graphic engine and sound engine.

4.7.4 Export Animation (6.4)
In animation editor, user is able to export animation. In this function we use the audio

and video libraries of ‘ffmpeg’ multimedia system. The libraries ‘libavcodec’ and

‘libavformat’ libraries of ‘ffmpeg’ provides necessary codecs and tools to combine

screenshots taken from graphics and then combine it with the sound recorded by

sound engine.

24

5 DATA DESIGN

5.1 Classes
In this part of the document, the data structure we are going to use in our project is

explained. Beside the classes we will use from libraries we have designed many

classes. All of these classes have ‘set’ and ‘get’ functions for every attributes which

are not told here. Other properties of these classes are explained below.

All other relationships between classes are displayed in a diagram which is at

Appendix A.

5.1.1 VisualObject Class
This class is mainly the base class for our objects. All other objects except “Road”

object is inherited from this class.

It stores the main properties of an object like the position and direction of our object in

our 3d world. Also, model filename is stored here. ‘objectName’ is unique for every

object. ‘objectType’ is the type of our object.

25

5.1.2 Human Class
This class uses multiple inheritence and is inherited from our VisualObject class and

OpenSteer’s SimpleVehicle class. SimpleVehicle class is used for Artificial Intelligence

and guessing the next positions of the objects, thus we had to inherit our class from

that. Moreover, this class has some extra methods to control our object.

5.1.3 Vehicle Class
This class also uses multiple inheritence like Human class. It is inherited in the same way

like Human class. In this class we have an extra method to drive our vehicle to the

position we give.

5.1.4 StaticObjects Class
This class is inherited from VisualObject class and defines the static objects in our

program. These objects can be listed as: buildings, trees, etc. We do not need any

special method for this class because they will be positioned and will not move until

users decides to edit the object.

5.1.5 Traffic Class
This class is also inherited from VisualObject class. Addition to the properties of the

VisualObject class, it also stores the information of which traffic object it belongs to.

This class is designed to differ traffic objects like roads, sideways, crossways, traffic

lights, traffic signs etc. from other objects.

5.1.6 BlueArea Class
Objects of this class have special use in our program. This class is also inherited from

VisualObject class. Objects of this class is used for displaying messages on the screen

which are defined by the educator. Objects of this class are not visible to students

neither in games nor animations but visible to the educators using the editor.

‘type’ defines the type of the BlueArea object which can be either ‘start’, ‘end’,

‘message’, ‘error’. ‘message’ is the message attached to this object. ‘isActive()’

checks whether it is the time for the BlueArea object to display the message or not.

26

5.1.7 Message Class
This class is the one which will be used to display messages.

‘messageType’ defines the type of the message which can be either a “question” or

“simple”.

‘soundbuffer’ is the buffer which will be used by openAL for storing the sound either

recorded by the educator or imported by the method ‘importSound()’ from a ‘.wav’

file. Its initial value is ‘null’. Thus there cannot be any sound messages wihout texts.

‘display()’ method is the method used for displaying the messages.

5.1.8 BaseApp Class
This class is the base class for our ‘Animation’ and ‘Game’ classes. It cannot be

created without using these two classes. It stores the common properties of the other

two classes like ‘map’ and ‘messages’. ‘mode’ stores the value that tells whether the

objects are in “viewer” or “editor” mode.

27

It has a ‘save ()’ method for the user to save the animation or game he/she created.

This method calls FileManager’s related method depending on the object to be

saved.

‘errorCount’ is stored to give a report at the end of an animation or game about the

progress of the student.

‘predictNextPosition()’ is the method that uses AI with OpenSteer functions. It gives us

the next positions of ‘Human’ and ‘Vehicle’ objects.

‘addObject()’ and ‘removeObject()’ methods are defined for user to add or remove

objects in editor mode.

28

5.1.9 Game Class
This class is inherited from the ‘BaseApp’ class. It defines the main structure of our

game in our program.

‘mainCharacter’ is the object which will be controlled by the student during the

game.

‘camMode’ is the mode of the camera view. There are three modes for the camera

which can be listed as: first person view, third person view and a view far from the

player.

‘startMission’ and ‘endMission’ define the start and end of the game. Game starts with

the player positioned at ‘startMission’ BlueArea. When the player reaches the

‘endMission’ BlueArea the game ends. ‘otherBlues’ vector defines the other BlueArea

objects attached to messages that player can face during the game.

‘pedestrian’ and ‘traffic’ vectors control the density and the flow of vehicles and

people other than the player. They are controlled by AI on a given path that we used

different vectors for them.

‘keyboardCB’ and ‘mouseCB’ methods controls the movement of ‘mainCharacter’

according to the input by the player. They only work in viewer mode of the game

object.

5.1.10 Animation Class
This class is also inherited from BaseApp class just like Game class. It defines the main

structure of the animations in our application.

In addition to the attributes of BaseApp class there is ‘seconds’ attribute for us to

control the timeline in our application.

29

‘maxTime’ is the maximum duration of the animation given by the user at the

beginning of the creation of the animation.

‘commands’ is an array of string vectors and will store the movements of the objects

in our program. The structure of this array is:

• Length of the array is defined according to the ‘maxTime’ given by the user

• Each vector defines the frame at that time of the animation

• Each element is a vector of strings

• At the beginning of each vector, first two strings are camera position and

camera look at at that time

• Other strings will be composed of the name of the object, name of the

movement method of that object and parameters of that method in

order,ending with a delimiter.

‘currCamPosition’ and ‘currCamLookAt’ are Vector3 objects defining the camera

view.

‘play()’ and ‘pause()’ methods will be used by the student during the viewer mode

of the animation.

5.1.11 Map Class

This class stores the objects in our application. Both visual objects and roads are stored

in a map object. It is used by BaseApp class.

‘objects’ is the vector that stores the objects put by the user in editor mode.

30

‘road’ is the roads defined by the user in editor mode.

‘mapName’ is a unique name defined for the map.

5.1.12 Road Class
This class just stores the segments of RoadSegment objects in a vector. It stores all of

the roads defined by the user in one object to be used by a map.

5.1.13 RoadSegment Class
This class is the main element of a Road object which is a segment composed of

straight roads defined by the user. ‘start’ and ‘end’ values are stored with a Vector2

object, thus any road added to the map can be queried and combined with the

‘combine()’ method.

5.1.14 Path Class
This class is specially designed for the AI to control the movements of objects in a

given path. Just like the ‘Road’ class this class also uses RoadSegment objects to store

the path. Moreover, there is a different attribute called ‘density’ to store the density of

vehicles or pedestrians on the given path. This value is initialized to 0.5 and cannot be

less than 0 or bigger than 1.

31

5.1.15 FileManager Class

This class is consisted of just methods. No instance of this class can be created. All

methods are static.

‘saveAnimation()’ and ‘saveGame()’ methods are used for saving the animation or

the game made by the educator in the editor. They are stored as ‘.anim’ and

‘.game’ files.

‘loadAnimation()’ and ‘loadGame()’ methods are used by both the editor and the

viewer mode. When they are opened in editor mode, user can make changes on

them and make a different animation or a game. On the other hand, in viewer mode,

user can watch the animation or play the game. In viewer mode these methods are

called by the button callback functions in the main menu or animation and game

windows.

‘exportAnimation()’ method exports the given animation to ‘.avi’ format using OGRE

functions and FFMPEG. Thus, the animation can be viewed without the need of our

program in any video viewer.

‘saveLog()’ method is used for saving the user’s errors during the animation or game.

These errors are saved to ‘log.txt’ file in the directory of the animation or game.

‘loadModel()’ method is used for getting the model from the model repository.

32

5.1.16 UserInterface Class

This class contains the main functions that GUI will use. No instance of that class can

be created. All the methods of this class are static.

‘setMode()’ and ‘getMode()’ methods are getting the mode of the application and

displaying the next window according to this mode. These modes are ‘animation’

and ‘game’ mode.

5.1.17 Vector2 Class
This class consists of two floats which correspond to x and z values in the 3D space of

OGRE.

5.1.18 Vector3 Class
This class consists of three floats which correspond to x, y and z values in the 3D space

of OGRE.

33

5.2 File Formats

5.2.1 Model Files
We will draw our visual object models in 3D Studio Max. Then this models will be

exported to Ogre file conventions. Ogre has a tool for that purpose (3DS Max to Ogre

exporter).

Ogre recognizes mesh data in “.mesh” files, skeletal animations associated with that

mesh in “.skeleton” files, and material properties of that mesh in “.material” files.

Exporter will create each file for our models.

Also, in editor mode (both animation and game), we will need a thumbnail of that

model in our object toolbar (so that user can see what will be added to the

environment). This thumbnails will be 100 * 100 pixel long “.jpg” files.

There must be a text file (with extension “.desc”) for each model. This file will consists of

one line only (the type of the object).

There must be another text file (with extension “.txt”) for each model. This file will

contain the text which will be showed in the toolbar (in editor mode) when user

moves the mouse over them.

All models will have a unique name, and all these files will be named with that name

(modelname.jpg, modelname.mesh, modelname.skeleton, modelname.material,

modelname.desc, modelname.txt). Also all of these files will be put in a tar file with

extension “.model” (modelname.model).

And all of the models are put in a folder named as “models”. In later post-release

upgrades of the program, newer models also should be copied into this folder.

34

The relation between model files and VisualObject classes
As we stated above, we will read visual data of visual objects. In both editor mode

and player mode, all these objects will be read from files and will be hold as objects

of base classes. Distinction of these base classes is done according to animations and

logical requirements of objects. These base classes are Human class, Vehicle class,

StaticObjects, Traffic, BlueArea classes. Detailed explanation has been done about

the classes in the previous section called Classes.

We can think these base classes as a virtual interface for arranging and animating

these objects. All of visual objects will derive from one of these objects. Therefore, all

models we will read from our model repository, must implement our animation

functions. (Design of our models will be explained in another chapter.) Later in our

application, we will trigger all these animations, by calling the member methods of

these base classes. Here is a demonstration of this process:

Model files will only contain visual animations. Other calculations (such as

transformations due to animation) will be in base class methods.

Human Class:

Human class is intended for any walking object on the map. Both children and adults

are objects of this class. The detailed information about this class is given in the classes

35

section of this document. The models designed for objects of this class must

implement these animations in 3D Studio Max:

o walk

o run

o rotate

o look (looking in a direction without moving)

Vehicle Base Class:

Vehicle class is intended for any vehicle that moves on the road. Buses, cars, children

with bicycles are objects of this class. The detailed information about this class is given

in the classes section of this document. The models designed for objects of this class

must implement these animations in 3D Studio Max:

o go

5.2.2 Animation Files
Animations are hold in a ‘.tar’ file called “AnimationName.anim”. These tar file

includes other files for the data of animation. These files are given below.

“AnimationName.txt” : This file is a text file that contains the length of the

animation in seconds, in the first line.

“AnimationName.timeline” : This file is a text file. It contains all animation details. The

lines starting with “#N:” indicates that the lines below that line are the commands that

must be executed in the Nth second, until the line starting with “#N+1:”. Each line,

after that line, is a command string. The structure of command strings are described in

Animation class.

“AnimationName.map” : This is the file for the map that animation is built on. The

structure of this file is given below.

In addition to these files, there is a folder with name “Messages”. In this folder, there

are two files for each message in the animation.

36

“MessageName.txt” : It is the text of the message with name messageName.

“MessageName.wav” : If this file does not exist then it means that there is no

sound recorded with that message. If exists, it is the sound clip associated with that

message.

5.2.3 Game Files
Games are hold in a ‘.tar’ file called “GameName.game”. These ‘.tar’ file includes

other files for the data of game. These files are given below.

“GameName.txt” : This is a text file. The first line of this text file includes the

name of the object, which is set to be the main character in the game. The second

line of this folder is the name of the BlueArea object in which the main character of

the game starts playing. The third line of this folder is the name of the BlueArea object

which the game ends when main character steps on.

“GameName.map” : Exactly same as animation case.

“Messages” folder : Exactly same as animation case.

“GameName.blue” : This is a text file. Each line describes a blue object. In

each line there are numbers and string which describes the object in this order

(ObjectName, ObjectPosition, type, Name of the bounded message object)

“GameName.pedestrian” : This is a text file. Each line describes a path. First number is

the float value which describes the density of pedestrian traffic. The numbers coming

after are the starting and ending vectors of road segments. There can be multiple

segments for a path.

“GameName.traffic” : This is a text file. Each line describes a path. First number is

the float value which describes the density of car traffic. The numbers coming after

37

are the starting and ending vectors of road segments. There can be multiple

segments for a path.

5.2.4 Map Files
Map files are text files. In the first part of these files, there are the descriptions of the

objects (visual objects with type human, vehicle, and static). Each line indicates only

one object. The description of the objects includes these values in a plain string

format: (name of the object, type of object, name of the model, object position,

object direction).

After objects are done, there will be an indicator “#”, which means that road data

will come after. The road data is same as pedestrian and traffic files described in

previous section.

After road data is done, there will be another “#”, which means traffic objects

descriptions will come after. These types of objects are described similarly with human

or vehicle objects: (name of the object, type of object, secondary type, name of the

model, object position, object direction).

5.2.5 Log Files
Log files are the files created after an animation or game is viewed in viewer mode.

These are recorded in the same folder with the animation or game. They are simple

text files, includes the number or traffic errors, or wrong answers to questions in game

or animations. The name of the files are made with the username that user has

entered at the beginning of the program. ‘username.log’

6 SEQUENCE DIAGRAMS

6.1 Sequences Related to User Interface
Below are definitions of some typical types we used in our sequence diagrams.

User Interface: It is just user-computer interface described at GUI design part.

A/G File : An animation or game file in our own file format.

38

BaseApp : An animation or game object described at class diagrams.

6.1.1 Ruler
As described at GUI design part there is going to be a ruler to cross the frames on 3D

view sup-part of the editor. When GUI detects any attempt to change the ruler the

new position of the ruler is set on the screen and corresponding frame is loaded to 3D

part of the editor by using graphic engine and AI (AI decides the correct positions of

objects).

Ruler Sequence Diagram

39

6.1.2 Load Animation / Game
When GUI detects a user press ‘Aç’ tool-command as shown on the figure at GUI-

Editor Design part, it directs the request to File Manager class. File Manager opens

and reads the desired A/G file. Then a BaseApp object is created. The order we load

into our A/G file will effect the sequence on the below diagram. Since it is just about

the coding, later on we may change the order. For this time it is assumed that

information of attached messages in A/G file is kept before the whole objects in

animation or game. So in the below diagram first all messages information are loaded

to the animation or game object , then information of whole objects are read and

loaded to it. Then graphics engine uses our BaseApp object and displays the frames

on 3D part of the editor. Also with respect to the properties of BaseApp, the other sub-

parts of the editor are set. For example, with respect to the mode (loaded animation

or loaded game), the editor is shaped in a distinct way.

40

Load Animation/Game Sequence Diagram

6.1.3 Convert Animation to .avi format
When GUI detects a user press ‘Aktar’ tool-command as shown on the figure at GUI-

Editor Design part, it directs the request to graphic and sound engine. Graphic engine

converts the animation to ‘.jpeg’ files and sound engine captures the sound. Then

‘.jpeg’ files and ‘.wav’ file are sent to ffmpeg library by the file manager class and

‘.avi’ format is created by ffmpeg with a feedback sent to GUI.

41

Animation Export to ‘.avi’ Sequence Diagram

6.1.4 Add Object
When GUI detects a user pressing on ‘Araç Kutusu’ as shown on the figure at GUI-

Editor Design part, it directs the request to BaseApp object. Corresponding object is

created and added to the objects of Map. And through the File Maneger, this

object’s model files data are sent to graphics engine. Then graphics engine adds the

object to the current display.

42

Object Addition Sequence Diagram

6.1.5 Capture
When user wants to capture sound for messages by microphone, sound engine

creates a message object. Then, it loads the buffer of this message object with the

incoming audio data.

Sound Capture Sequence Diagram

43

6.1.6 Save Animation or Game File
When any save request is detected an A /G file is created as a respond by the File

Manager. File Manager accesses the BaseApp class and gets the data to be saved,

writes them into the A/G file. All the buffers (in message objects are also saved into

.wav files) at the end close the file and finalize the process.

Save Animation/Game File Sequence Diagram

6.1.7 Play Selected Message
Sound Engine plays the wave that was previously loaded into memory.

Play Selected Message Sequence Diagram

44

7 ADDITIONAL CONVENTIONS

7.1 Virtual 3D World
Our virtual environment is a 3D world where each element of the map is associated

with a two dimensional position vector (since any map element always stands on the

floor, i.e. doesn't fly). The floor of our world lies in the positive x-z plane (so all

coordinates are positive).

In our world, unit coordinates are assumed to be equal to meters. So 2 meter long car

will appear 2 units long (in horizontal coordinates) in our world. Also a 10 meter high

building will appear as 10 units in y coordinate.

The floor of our virtual world is flat. So we don't need any mechanism for describing

the natural elevation (such as mountains). So we will need only models for our visual

objects (humans, vehicles, buildings, etc) while rendering our virtual world.

Our virtual world is finite. So while creating the world, we must give boundary

parameters for x and z coordinates. Therefore, the size of the world can be different

(which can be set by user while creating the world). Height of our world is fixed to 20

units in y direction (actually it is not important for our program; it just must be higher

than the longest building model). So, we can draw our model in a rectangular prism.

Our virtual world is described as entities of Map class (the definition of this class is

given in another section). The objects of this class will include data about size of the

world and the visual objects placed in that world.

Our animations and games occur in virtual world. So any animation or game is

associated with a Map object.

7.2 Frame Rate issue in games and animations
All applications which include animations have a problem with setting the rates of the

animations. When a scene is showed on the screen, it takes long time if there are a lot

45

of objects in the scene; it takes less when there are a few objects in the scene. So it

may end with animations and object movements asynchronous in the game, which

may be unpredictable and fatal for our application.

We overcome this issue by calculating the next positions of our objects by the help of

our AI engine. This is done as follows:

After a frame has ended, the value of elapsed time of rendering can be taken from

our graphics engine. If an object is moving, then the value of transformation is

calculated by multiplying the time elapsed by the speed of the object. So the

transformation value per frame is not fixed within the game. If frame rendering takes

longer, the position of the object will move more in next frame and vice versa. This

method will cause frame skipping if the computer running the program is very slow.

But we ensure that there will be no fast or slow movement of objects because of

computer power. We gave an example below.

The speed of the object is 20 units per second and frame rate is 20 frames per second:

then the speed per frame is 1 unit. The frame rate is 40 frames per second: then the

speed per frame is 0.5 unit. The frame rate is 10 frames per second: the speed per

frame is 2 units.

This will not give an extra performance loss for our program since we will already be

using AI engine for predicting the next movements of objects.

8 CONCLUSION
This document includes the design details of our software tool. During the preparation

of the document we examined all of the external tools and libraries which will be used

in the development steps of our tool. We have determined the following design

details:

• Class structure and classes

• Data structure

46

• File structure

• The tool and libraries that we will use

• The relation and connections between the external tools, libraries and our main

program

• Flow of data which is illustrated by using DFD diagrams

• Our conventions to the application

47

9 APPENDIX

9.1 Appendix A – Class Hierarchy and Relations

48

9.2 Appendix B – Gantt chart

49

ID Task Name Duration Start Finish

1 Project Definition 15 days Mon 03.10.05 Fri 21.10.05
2 Problem Definition 15 days Mon 03.10.05 Fri 21.10.05

3 Project Scope Determination 15 days Mon 03.10.05 Fri 21.10.05

4 Research and Survey 29 days Fri 07.10.05 Sun 13.11.05
5 Literature Survey 20 days Fri 07.10.05 Wed 02.11.05

6 Meetings 16 days Fri 07.10.05 Fri 28.10.05

7 Technical research 18 days Mon 24.10.05 Sun 13.11.05

8 Development tools research 18 days Mon 24.10.05 Sun 13.11.05

9 Requirement Analysis 13 days Fri 21.10.05 Mon 07.11.05
10 Deciding on specifications 6 days Fri 21.10.05 Fri 28.10.05

11 Making Use Cases 4 days Sat 29.10.05 Wed 02.11.05

12 Report preparation 11 days Sat 22.10.05 Sun 06.11.05

13 Requirement Analysis Report 1 day Mon 07.11.05 Mon 07.11.05

14 Design 64 days Tue 08.11.05 Tue 10.01.06
15 Specifications review 6 days Tue 08.11.05 Sun 13.11.05

16 Editor Design 8 days Mon 14.11.05 Mon 21.11.05
17 Game Editor 6 days Mon 14.11.05 Sat 19.11.05

18 Animation Editor 8 days Mon 14.11.05 Mon 21.11.05

19 Viewer Design 6 days Sun 20.11.05 Fri 25.11.05
20 Game player 6 days Sun 20.11.05 Fri 25.11.05

21 Animation watcher 6 days Sun 20.11.05 Fri 25.11.05

22 Architechtural Design 7 days Wed 16.11.05 Tue 22.11.05
23 Defining Architecture 3 days Wed 16.11.05 Fri 18.11.05

24 Drawing DFD 4 days Sat 19.11.05 Tue 22.11.05

25 Data design 12 days Fri 18.11.05 Tue 29.11.05
26 Defining Classes 6 days Sat 19.11.05 Thu 24.11.05

27 Defining file types 3 days Sun 27.11.05 Tue 29.11.05

28 File interactions 6 days Fri 18.11.05 Wed 23.11.05

29 GUI design 4 days Mon 28.11.05 Thu 01.12.05

30 Multimedia design 6 days Thu 24.11.05 Tue 29.11.05

31 Report preparation 3 days Fri 02.12.05 Sun 04.12.05

32 Initial design report 1 day Sun 04.12.05 Sun 04.12.05

33 Revision of initial design 5 days Mon 05.12.05 Fri 09.12.05

34 Implementation plan 21 days Sat 10.12.05 Fri 30.12.05

35 Report preparation 8 days Mon 02.01.06 Mon 09.01.06

36 Detailed design report 1 day Tue 10.01.06 Tue 10.01.06

37 Prototype 40 days Fri 09.12.05 Tue 17.01.06
38 Prototype design 15 days Fri 09.12.05 Fri 23.12.05

39 Prototype implementation 15 days Sun 25.12.05 Sun 08.01.06

40 Prototype release 1 day Tue 17.01.06 Tue 17.01.06

07.11

04.12

10.01

17.01

19.09 26.09 03.10 10.10 17.10 24.10 31.10 07.11 14.11 21.11 28.11 05.12 12.12 19.12 26.12 02.01 09.01 16.01 23.01
October November December January

Task

Split

Progress

Milestone

Summary

Project Summary

External Tasks

External Milestone

Deadline

Page 1

Project: ANKA_SCHEDULE
Date: Tue 06.12.05

50

	ANKA_designKAPAK.pdf
	CENG491

	ANKA_DesignReport.pdf
	
	1 INTRODUCTION
	1.1 Purpose and Scope of the Document
	1.2 Design Constraints and Limitations
	1.3 Design Goals
	2 OVERVIEW OF THE APPLICATION
	2.1 Preparing the Environment
	2.1.1 Defining the map
	2.1.2 Constructing a game
	2.1.3 Constructing an animation

	2.2 Playing the Game
	2.3 Watching the Animation

	3 USER INTERFACE DESIGN
	3.1 Player Menu Design
	3.2 Editor Design
	3.2.1 ‘Yeni’ tool-command
	3.2.2 ‘Aktar’ tool-command
	3.2.3 ‘Aç’ tool-command
	3.2.4 ‘Araç Kutusu’ Sub-Window
	3.2.5 ‘Eklenmiş Nesneler’ Sub-Window
	3.2.6 ‘Özellikler’ Sub-Window

	3.3 Viewer Design

	4 SYSTEM OVERVIEW
	4.1 User Interface (1.0)
	Input Handling (1.1)
	4.1.2 Output Integration (1.2)

	4.2 Graphics Engine (2.0)
	4.3 Sound Engine (3.0)
	4.4 AI Engine (4.0)
	4.5 Editor Engine (5A.0)
	4.5.1 Program Core (5A.1)
	4.5.2 Data Calculations (5B.2)

	Viewer Engine (5B.0)
	4.6.1 Action Triggers (5B.3)

	4.7 File Manager (6.0)
	4.7.1 Save (6.1)
	4.7.2 Load (6.2)
	4.7.3 Load Model and Sound (6.3)
	4.7.4 Export Animation (6.4)

	5 DATA DESIGN
	5.1 Classes
	5.1.1 VisualObject Class
	5.1.2 Human Class
	5.1.3 Vehicle Class
	5.1.4 StaticObjects Class
	5.1.5 Traffic Class
	5.1.6 BlueArea Class
	5.1.7 Message Class
	5.1.8 BaseApp Class
	5.1.9 Game Class
	5.1.10 Animation Class
	5.1.11 Map Class
	5.1.12 Road Class
	5.1.13 RoadSegment Class
	5.1.14 Path Class
	5.1.15 FileManager Class
	5.1.16 UserInterface Class
	5.1.17 Vector2 Class
	5.1.18 Vector3 Class

	5.2 File Formats
	5.2.1 Model Files
	The relation between model files and VisualObject classes

	5.2.2 Animation Files
	5.2.3 Game Files
	5.2.4 Map Files
	5.2.5 Log Files

	6 SEQUENCE DIAGRAMS
	6.1 Sequences Related to User Interface
	6.1.1 Ruler
	6.1.2 Load Animation / Game
	6.1.3 Convert Animation to .avi format
	6.1.4 Add Object
	6.1.5 Capture
	6.1.6 Save Animation or Game File
	6.1.7 Play Selected Message

	7 ADDITIONAL CONVENTIONS
	7.1 Virtual 3D World
	7.2 Frame Rate issue in games and animations

	8 CONCLUSION
	9 APPENDIX
	9.1 Appendix A – Class Hierarchy and Relations
	9.2 Appendix B – Gantt chart

	ANKA_SCHEDULE.pdf

